If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+(1/3)x-(10/3)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2x^2+(+1/3)x-(+10/3)=0
We multiply parentheses
2x^2+x^2-(+10/3)=0
We get rid of parentheses
2x^2+x^2-10/3=0
We multiply all the terms by the denominator
2x^2*3+x^2*3-10=0
Wy multiply elements
6x^2+3x^2-10=0
We add all the numbers together, and all the variables
9x^2-10=0
a = 9; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·9·(-10)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*9}=\frac{0-6\sqrt{10}}{18} =-\frac{6\sqrt{10}}{18} =-\frac{\sqrt{10}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*9}=\frac{0+6\sqrt{10}}{18} =\frac{6\sqrt{10}}{18} =\frac{\sqrt{10}}{3} $
| 6x-12+16=12x-18-15x+10 | | m-10=-22 | | t-1/3+t+5/4=1/2 | | 6/h−1=3 | | m+10=-22 | | 6/h−1=3 | | F(x)=-1/4+6 | | 21x=-29 | | x^2+2x-1=x+5 | | n+6=33 | | 3z=15-2z | | 11x^2-2x-86=2x^2-2x-5 | | -7/3t=3/4 | | 6x-42=9x-93 | | 3/8x+1/8=3/10 | | 2/3x=4/4 | | 10*1.5^x=1000000 | | 12x+8=-3+16 | | 10*1.5^x=100 | | 9x+5x=8.4 | | 4x+3+5x=8x+12 | | 3x^2-x=100 | | 4(a-4)=a+15 | | 3(x+1)=4(2x-3) | | √x^2+64=0 | | (√x^2+64)=0 | | (3x−1)2+12x−4=0} | | 6n+10=-3n+7 | | -2b-4b=6 | | 5(x-5)=2(8+10) | | |-5x|=15 | | 9x-58=6x-47 |